

Reaktionen der Hydrazid-verbrückten Cluster HRu₃(CO)₉(RN-NR₂) mit Alkinen

Bernhard Hansert und Heinrich Vahrenkamp*

Institut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany

Eingegangen am 13. Mai 1993

Key Words: Hydrazide ligands / Vinyl ligands / Alkyne insertions / Ruthenium clusters / Structure determinations

Reactions of the Hydrazide-Bridged Clusters HRu₃(CO)₉(RN-NR₂) with Alkynes

The clusters $HRu_3(CO)_9(RN-NR_2)$ (1) with triply bridging hydrazide ligands $(RN-NR_2 = MeN-NHMe, HN-NHMe, HN-NHMe)$ $HN-NMe_2$ undergo reactions with the alkynes $HC\equiv CPh$ and $PhC\equiv CPh$ to yield three cluster products in each case. One of them (2) is presumed to result from Ru-H insertion with concomitant cluster opening. The second (3) contains an open Ru₃

In der Clusterchemie sind Alkine willkommene Reagenzien, um in der Ligandensphäre organische Baueinheiten zu erzeugen, ggf. unter Einbeziehung bereits vorhandener organischer Liganden^[1,2]. Auch wir haben die damit verbundenen Synthesemöglichkeiten schon auf verschiedene Weise genutzt^[3,4]. Speziell auf Ruthenium- und Eisenclustern konnten wir µ3-verbrückende Alkylidin-, Nitren- und Azoalkanliganden mit Alkinen zu ketten- und ringförmigen Molekülen kombinieren, die z.T. auch freigesetzt werden konnten^[5,6]. Die Azoalkan-Ru₃-Chemie hatte uns nun als Folgeprodukte Hydrazid-verbrückte Cluster in die Hand gegeben, die zusätzlich einen μ_2 -Hydridliganden tragen^[7]. Diese bieten einem Alkin-Reagens sowhl an der Ru-H-Funktion als auch am μ_3 -Hydrazid Angriffsmöglichkeiten. Die vorliegende Arbeit beschreibt unsere Versuche, die damit gegebenen Reaktionsmöglichkeiten auszuloten.

Ausgangskomplexe

Als Ausgangsverbindungen wählten wir die drei einfachen Methylhydrazin-Derivate **1a–c**, die neu synthetisiert werden mußten. Sie sind prinzipiell nach unserer Methode durch Hydrierung der zugrundeliegenden μ_3 -Azoalkan-Ru₃-Cluster^[7] oder nach der Methode von Süss-Fink aus Ru₃(CO)₁₂ und dem entsprechenden Hydrazin^[8] zu erhalten. Letzteres ist für die *N*-Methyl-Verbindungen bequemer. Dementsprechend stellten wir **1a–c** aus Ru₃(CO)₁₂ und 1,2-Dimethylhydrazin, Monomethylhydrazin und 1,1-Dimethylhydrazin in siedendem THF in guten Ausbeuten her.

cluster bridged by a unique μ_3 - η^2 -vinyl ligand, as shown by a structure determination. The third (4) represents the expected simple reaction product with a σ,π -bound vinyl ligand, again proved by a structure determination. Cluster type **3** is converted to cluster type **2** by CO addition.

1a--c waren mit Bezug auf bekannte Vergleichskomplexe^[7,8] über ihre IR-Daten leicht zu identifizieren, vgl. Tab. 1. Ihre NMR-Spektren zeigen die RuH-, NH- und NMe-Signale an den erwarteten Stellen (Tab. 1).

Tab. 1. IR- und ¹H-NMR-Daten der Ausgangskomplexe

							And a state of the second
IR ^{a)}	1a	2082s,	2052sst,	2030sst,	2006st,	1986st,	195 4 \$\$
	1ь	2082 s,	2052sst,	2029sst,	2006st,	1987 s t,	1956ss
	1c	2084s,	2054st,	2030sst,	2009st,	1996m,	1955ss
_{NMR} b)	1a	3.64(q,	J=5.7Hz,1H	, <u>мн</u> сн ₃),	2.89(s,3H	н, NC <u>H</u> 3),	
		2.57(d,	J=5.7Hz,3H	, NHC <u>H</u> 3),	-12.73(s,	RuH)	
	1ь	5.12(s,	1H,NH), 3	3.71(q,J=5	8Hz,1H,N <u>H</u>	ICH ₃),	
		2.56(d,	J=5.8Hz,3H	(, NHC <u>H</u> 3),	-12.77(s,	RuH)	
	1c	4.83(s,	1H,NH), 2	2.58(s,6H,1	(CH ₃) ₂ ,	-13.10(s,	RuH)

^{a)} In Hexan, v(CO), cm⁻¹. - ^{b)} δ -Werte, in CD₂Cl₂, int. TMS.

Alkinreaktionen

Für die Umsetzungen wurde als terminales Alkin Phenylacetylen und als internes Alkin Diphenylacetylen eingesetzt. Die insgesamt sechs schon bei Raumtemperatur ablaufenden Reaktionen führten alle zu Gemischen von in der Regel drei Alkin-Additionsprodukten. Die daraus abgeleitete Annahme, daß das Alkin von den verschiedenen Angriffsmöglichkeiten am Cluster Gebrauch gemacht habe, bestätigte sich aber nicht. Mit Hilfe der Spektren und Strukturanalysen (s.u.) wurde festgestellt, daß in allen drei Fällen das Alkin in die Ru-H-Funktion unter Bildung eines Vinylliganden insertiert worden ist. Der Unterschied der Produkttypen 2, 3 und 4 besteht demnach in der Form und Elektronenbilanz des Ru₃-Clusters und in der Anbindung des Vinylliganden. Das jeweilige Produktverhältnis 2:3:4ließ sich durch Erhitzen der Gemische nicht verändern.

Die Trennung der jeweils drei Clusterprodukte war schwierig, da sie sich chromatographisch sehr ähnlich verhalten und einige von ihnen in sehr kleinen Ausbeuten anfielen. Aus diesem Grund waren **4d** und **e** selbst für eine IR-Messung nicht in ausreichender Menge zugänglich, und von den insgesamt 18 möglichen Produkten fielen nur 10 in analytischer Reinheit an. Die drei Produktgruppen ordnen sich durch ihre IR-Daten (Tab. 2) zusammen, die für alle drei auf das Vorhandensein verbrückender CO-Liganden hinweisen. Die NMR-Daten (Tab. 3) belegen das Verschwinden des Hydridliganden in **1** und das Vorhandensein des Vinylliganden. Sie geben keine Information zur Konstitution der Komplexe. Diese mußte für die Typen **3** und **4** aus den Strukturanalysen gewonnen werden.

Vom Typ 2 konnten keine für eine Strukturanalyse geeigneten Kristalle erhalten werden. Seine Strukturzuordnung beruht im wesentlichen auf einer chemischen Beziehung: unter einer CO-Atmosphäre entsteht aus 1c und Phenylacetylen bevorzugt 2e, während unter N₂ 3e das

Tab. 2. IR-Daten der Alkin-Insertionsprodukte [in CH₂Cl₂, v(CO), cm⁻¹]

2a	2068m,	2032sst,	2007sst,	1978m,	1944m,	1811s
2ь	2067m,	2032sst,	2005sst,	1974m,	1943m,	1803s
2c	2065s,	2034sst,	2009sst,	1980m,	1950m,	1796s
2d	2064s,	2032sst,	2009sst,	1977m,	1950m,	1801s
2e	20 62s,	2032sst,	2010sst,	1981m,	1948m,	1800s
2£	2063s,	2034sst,	2009sst,	1980m,	19 49m,	1800s
3 a	2081s,	2036sst,	2002sst,	1963m,	1787s	
3Ъ	2063m,	2022sst,	2013sst,	1955st,	1796s	
3c	2070s,	2032sst,	2009sst,	1960m,	1793s	
3d	2059s,	2030sst,	2014sst,	1959st,	1800m	
3 e	2061s,	2031sst,	2008sst,	1959m,	179 3s	
3£	2058s,	2017sst,	1993Sch,	1957st,	1798s	
4a	2063s,	2033sst,	2007st,	1980m,	1950m,	1787s
4 b	2065s,	2030sst,	2006sst,	1985m,	1948m,	1803s
4 c	2063s,	2032sst,	2009sst,	1981m,	1942m,	1799s
4 f	2060s,	2031st,	2012sst,	1976Sch,	1958m,	1800s

Hauptprodukt ist. Und durch Umsetzung von 3e mit CO in Lösung wird nur 2e gebildet. Die Zahl von CO-Gruppen und damit die Elektronenbilanz im Clustertyp 2 verlangen demnach nur zwei Metall-Metall-Bindungen und die Zählung der Vinylgruppe als Dreielektronenligand, was zu dem im Formelbild gegebenen Strukturvorschlag führt, der eine der denkbaren Anordnungen im Molekülgerüst wiedergibt.

Strukturanalysen

Abb. 1 zeigt das Molekülgerüst von **3e**. Wie aus dem NMR-Spektrum ersichtlich, enthält der Cluster einen Vinylliganden. Dieser ist aber auf eine sehr untypische Weise an die drei Metallatome gebunden, wie sie sonst nur gelegentlich für Acetylid- oder Vinylidenliganden beobachtet wurde^[11]: Über dem offenen, beinahe rechtwinkligen [86.2(1)°] Ruthenium-Dreieck sitzt auf der einen Seite der 1,1-Dimethylhydrazid- und auf der anderen Seite der 1-Phenylvinyl-Ligand, beide in unsymmetrisch dreifach verbrükkender Anordnung.

Abb. 1. Molekülstruktur von 3e. Ausgewählte Bindungsabstände: Ru1–Ru2 277.0(1), Ru1–Ru3 275.6(1), Ru1…Ru3 377.2(1), Ru1–N2 209(1), Ru2–N2 211(1), Ru3–N1 224(1), Ru1–C1 220(1), Ru2–C1 222(1), Ru2–C2 222(1), Ru3–C1 233(1), Ru3–C2 254(1), N1–N2 146(1), C1–C2 145(1) pm

Die Anordnung des Hydrazidliganden in **3e** ist grob mit derjenigen in HRu₃(CO)₉(μ_3 - η^2 -EtN--NHEt), einem Vertreter der Ausgangscluster **1**, vergleichbar^[9]. Die N-N-Bindung verläuft ungefährt parallel zu einer Ru-Ru-Kante, und das formal anionische N-Atom befindet sich in einer μ_2 -Position. Die Ru-N- und N-N-Bindungslängen in beiden Komplexen stimmen weitgehend überein; die einzige Abweichung betrifft die Ru3-N1-Bindung in **3e**, die 6 pm länger als in der Vergleichsverbindung ist.

Die Bindungssituation des Vinylliganden in 3e ist nicht mit einfachen Begriffen zu beschreiben. Zwar läßt sich die Vinylgruppe in erster Näherung als an Ru1 σ -gebunden und an Ru2 π -gebunden klassifizieren. Doch im Vergleich zu den üblichen Ru₃- und Os₃-Vinylkomplexen (vgl. **4a** und Tab. 3. ¹H-NMR-Daten der Alkin-Insertionsprodukte (δ-Werte, CD₂Cl₂, int. TMS)

2a	7.31-7.17 (m, 5H, Ph), 4.27 (d, J=4.3Hz, 1H, $\underline{H}_{a}H_{b}C=CPh$), 3.44 (d, J=4.3Hz, 1H, $\underline{H}_{a}\underline{H}_{b}C=CPh$), 2.86 (q, J=5.4Hz, 1H, N <u>H</u> CH ₃), 2.68 (s, 3H, NC <u>H₃</u>), 2.59 (d, J=5.4Hz, 3H, NHC <u>H₃</u>)
2Ъ	7.13-6.89(m,10H,Ph), 4.88(s,1H, <u>H</u> PhC=CPh), 3.27(q,J=5.4Hz,1H,N <u>H</u> CH ₃) 2.78(s,3H,NC <u>H</u> ₃), 2.65(d,J=5.4Hz,3H,NHC <u>H</u> ₃)
2d	7.54-6.78(m,10H,Ph), 4.07(q,J=5.2Hz,1H,NHCH ₃), 3.67(s,1H,NH), 3.65(s,1H,HPhC=CPh), 2.69(d,J=5.2Hz,3H,NHCH ₃)
2e	7.28-7.24 (m,5H,Ph), 3.56 (d, J=2.2Hz,1H, $\underline{H}_{a}H_{b}C=CPh$), 3.11 (s,1H,NH), 2.76 (s,3H,NC \underline{H}_{3}), 2.58 (s,3H,NC \underline{H}_{3}), 1.97 (d, J=2.2Hz,1H, $\underline{H}_{a}\underline{H}_{b}C=CPh$)
2f	7.52-6.65(m,10H,Ph), 3.65(s,1H, <u>H</u> PhC=CPh), 3.38(s,1H,NH), 2.82(s,3H,NC <u>H</u> ₃), 2.63(s,3H,NC <u>H</u> ₃)
3a	7.07-6.89(m,5H,Ph), 3.54(q,J=5.9Hz,1H,N <u>H</u> CH ₃), 3.29(d,J=5.5Hz,1H, <u>H</u> _a H _b C=CPh), 2.70(s,3H,NC <u>H</u> ₃), 2.09(d,J=5.9Hz,3H,NHC <u>H</u> ₃), 1.55(d,J=5.5Hz,1H,H _a <u>H</u> _b C=CPh)
3Ъ	7.11-6.70(m,10H,Ph), 3.94(s,1H, <u>H</u> PhC=CPh), 3.78(q,J=6.0Hz,1H,N <u>H</u> CH ₃) 2.32(d,J=6.0Hz,3H,NHC <u>H₃</u>), 2.08(s,3H,NC <u>H₃</u>)
3с	7.54-6.94(m,5H,Ph), 5.32(s,1H,NH) 4.24(q,J=6.0Hz,1H,N <u>H</u> CH ₃), 3.30(d,J=5.5Hz,1H, <u>H</u> _a H _b C=CPh), 1.95(d,J=6.0Hz,3H,NHC <u>H</u> ₃), 1.58(d,J=5.5Hz,1H, <u>H</u> _a H _b C=CPh)
3d	7.12-6.77(m,10H,Ph), 4.53(q,J=6.0Hz,1H,NHCH ₃), 3.84(s,1H,NH), 2.18(d,J=6.0Hz,3H,NHCH ₃), 2.08(s,1H,HPhC=CPh)
3e	7.09-6.92(m,5H,Ph), 3.37(d,J=5.9Hz,1H, <u>H</u> _a H _b C=CPh), 2.66(s,3H,NC <u>H</u> ₃) 2.27(s,1H,NH), 2.13(s,3H,NC <u>H</u> ₃), 1.69(d,J=5.9Hz,1H,H _a <u>H</u> _b C=CPh)
4 a	7.34-7.21(m,5H,Ph), 3.96(q,J=5.9Hz,1H,NHCH ₃), 3.46(d,J=3.2Hz,1H,H _a H _b C=CPh), 3.12(d,J=3.2Hz,1H,H _{aHb} C=CPh), 2.66(d,J=5.9Hz,3H,NHCH ₃), 2.62(s,3H,NCH ₃)
4ь	7.44-7.00(m,10H,Ph), 4.79(s,1H, <u>H</u> PhC=CPh), 4.07(q,J=5.7Hz,1H, N <u>H</u> CH ₃), 2.85(s,3H,NC <u>H</u> ₃), 2.69(d,J=5.7Hz,3H,NHC <u>H₃</u>)
4 c	7.31-7.23(m,5H,Ph), 4.01(q,J=5.7Hz,1H,N <u>H</u> CH ₃), 3.71(d,J=2.1Hz,1H, <u>H</u> _a H _b C=CPh), 3.40(s,1H,NH), 2.65(d,J=5.7Hz,3H,NC <u>H</u> ₃), 2.00(d,J=2.1Hz,1H,H _a <u>H</u> _b C=CPh)
4 f	7.35-7.03(m,10H,PH), 4.10(s,1H,NH), 2.78(s,3H,NCH ₃), 2.39(s,3H,NCH ₃), 2.21(s,1H,HPhC=CPh)

Lit.^[10,11]) ist die σ -Bindung um ca. 10 pm zu lang und die beiden Ru-C-Abstände der π -Bindung sind um ca. 5 pm zu kurz. Dies korrespondiert mit der gleichzeitigen Wechselwirkung der π -Bindung mit dem dritten Rutheniumatom, die durch einen bindenden Ru3-C1-Abstand und durch eine schwache Ru3-C2-Beziehung ausgedrückt wird. Der Vinyl-Dreielektronenligand befindet sich damit in einer Metallatom-Umgebung, die eher derjenigen eines Fünfelektronenliganden (z.B. Alkinyl) entspricht.

3e ist ein 48-Elektronen-Cluster, was nach den Abzählregeln das Vorliegen eines geschlossenen Metallatom-Dreiecks implizieren müßte. Die Mehrzentrenanbindung der Vinylgruppe (fünfbindige Kohlenstoffatome!) hebt diese Regeln auf und verlangt nach einer Einbeziehung der Kohlenstoffatome in die Formulierung des Clustergerüsts. Nimmt man auf dieser Basis ein Ru_3C_2 -Gerüst an und verweist nur das Hydrazid in die Ligandensphäre, dann kommt man nach den Wade-Regeln auf ein Gebilde mit 8 Skelettelektronenpaaren. Dem würde ein *arachno*-Gerüst des B_5H_{11} -Typs entsprechen. Ein solches läßt sich hier, leicht verzerrt, tatsächlich wiederfinden: in der Basis der tetragonalen Pyramide befinden sich die Atome Ru3, Ru1, Ru2 und C2, an der Spitze das Atom C1. Die offene Kante befindet sich zwischen Ru3 und C2, und sie ist charakteristischerweise mit mehr (CH₂) oder stärker elektronenliefernden (Ru3– NMe₂) Substituenten versehen.

Die Molekülstruktur von 4a ist mehr konventioneller Art, vgl. Abb. 2. Sie zeigt, daß die Cluster 4 als Isomere der

Cluster 3 so aussehen, wie es für die Ru₃-Anordnung aus der Gesamtelektronenzahl abzuleiten ist, wie es sich für den Hydrazidliganden aus der Struktur der Vorläuferkomplexe 1 ergibt, und wie man es für den Vinylliganden als Ergebnis der Einschiebung des Alkins in die Ru-H-Funktion erwarten kann.

Abb. 2. Molekülstruktur von **4a**. Ausgewählte Bindungsabstände: Ru1-Ru2 284.8(1),Ru1-Ru3 270.1(1), Ru2-Ru3 277.0(1), Ru1-N1 212(1), Ru3-N1 215(1), Ru2-N2 216(1), Ru2-C4 211(1), Ru3-C4 225(1), Ru3-C3 229(1), N1-N2 148(1), C3-C4 139(1) pm

Die Verteilung der Ru–Ru-Bindungslängen in **4a** entspricht der im Ausgangskomplex^[9]: Die einatomig verbrückte Bindung Ru1–Ru3 ist die kürzeste, die unverbrückte Ru1–Ru2 die längste. Orientierung und Atomabstände des Hydrazidliganden entsprechen bis ins Detail denjenigen im Ausgangskomplex^[9]. Auch der etwa in der Ebene des Ruthenium-Dreiecks koordinierte Vinylligand hält sich bezüglich Anordnung und Atomabständen streng an das mit **4a** verwandte Vorbild Ru₃(CO)₈(μ_3 - η^2 -NPh– C₃H₄N)(μ -PhC=CHPh)^[10]. Die Elektronenabzählung weist für Ru2 19 und für Ru1 17 Elektronen aus. Eine derartige Unsymmetrie ist für Komplexe dieser Art nicht ungewöhnlich^[1-4]. Sie äußert sich nicht in einer gesteigerten Polarität der Verbindung.

Diskussion

Wie schon erwähnt ist das Ungewöhnliche an den Komplextypen 2, 3 und 4 nicht die ihrer Bildung zugrundeliegende Einschiebungsreaktion, sondern der Unterschied ihrer Bindungsverhältnisse bei gleichzeitiger großer Verwandtschaft der Verbindungen. Die Komplexe 3 und 4 sind Isomere, die wiederum gegenüber 2 nur eine CO-Gruppe weniger aufweisen. Die CO-Übertragung war von 3 nach 2 möglich, andere Umwandlungen der Komplexe ineinander oder Verschiebungen ihres Mengenverhältnisses in Lösung konnten wir thermisch nicht erzielen. Die nachfolgenden Vorstellungen über die Entstehung der Komplexe sind deshalb rein spekulativ, da sie nicht schrittweise experimentell nachvollzogen wurden.

Nach unserer Vorstellung ist das erste Ergebnis der Alkin-Insertion in die Komplexe 1 der Komplextyp 2. Zu seiner Bildung muß das Primärprodukt der Alkin-Insertion, ein σ -Vinyl-Ru₃-Komplex, sich so umlagern, daß die π -Bindung des Vinylliganden als Zweielektronen-Donor eine Ru-RuBindung öffnet. Der Komplextyp 2 kann dann unter CO-Abspaltung in den ungesättigten Komplextyp 3 übergehen, was zumindest durch die Umkehrreaktion belegt ist. Dies verlangt ein Einschwenken der Vinylgruppe zwischen die Metallatome. Aus dem Komplextyp 3 schwenkt dann die Vinylgruppe unter Rückbildung der Ru-Ru-Bindung ohne Änderung der Gesamtzusammensetzung wieder heraus. Der entstehende Komplextyp 4 ist demnach das Endglied der Reaktionssequenz und gleichzeitig das aus der bekannten Clusterchemie zu erwartende Produkt der Alkin-Insertion.

Alternativ läßt sich die Entstehung aller drei Produkttypen 2, 3 und 4 aus einer gemeinsamen Vorstufe, dem σ -Vinyl-Ru₃-Komplex, formulieren. Schiebt sich dessen C--C- π -Bindung in eine Metall-Metall-Bindung ein, entsteht Typ 2. Substituiert sie eine CO-Gruppe am "linken" Rutheniumatom, entsteht Typ 4, und substituiert sie eine CO-Gruppe am "rechten" Rutheniumatom, entsteht Typ 3. Beide mechanistischen Alternativen lassen nicht leicht verstehen, warum die Mengenverhältnisse von 2, 3 und 4 nicht temperaturabhängig sind.

Unabhängig davon belegt das Auftreten der drei Produkttypen 2–4 erneut eine unserer Thesen^[3,4], daß metallzentrierte organische Umwandlungen nicht nur aus den Beziehungen der organischen Bestandteile zueinander, sondern oft gleichbedeutend aus Bewegungen und Bindungsveränderungen der Metallatome bestehen, wie es sich auch eindrucksvoll aus der modernen Oberflächenchemie ergibt.

Diese Arbeit wurde von der Volkswagen-Stiftung, dem Fonds der Chemischen Industrie und vom Land Baden-Württemberg im Rahmen der Landes-Schwerpunktprogramme unterstützt. Frau S. Stöhr half bei den präparativen Arbeiten.

Experimenteller Teil

Die allgemeinen experimentellen Techniken waren wie beschrieben^[12]. Die analytische Charakterisierung der neuen Komplexe ist in Tab. 5 zusammengefaßt.

Hydrazid-verbrückte Ausgangscluster

1a: 302 mg (0.472 mmol) Ru₃(CO)₁₂ und 71 mg (1.18 mmol) 1,2-Dimethylhydrazin wurden in 50 ml THF auf 70°C erhitzt. Nach einer Reaktionszeit von 5 h war laut DC-Kontrolle kein Ru₃(CO)₁₂ mehr in der Reaktionslösung nachweisbar. Die Reaktion wurde abgebrochen, alle flüchtigen Bestandteile wurden i. Vak. entfernt und der Rückstand wurde über eine Kieselgelsäule (2 × 30 cm) mit Hexan/CH₂Cl₂ (6:4) als Elutionsmittel chromatographiert: 1. Fraktion (orange): Spur Ru₃(CO)₁₂. – 2. Fraktion (gelb): Nach Umkristallisieren aus Hexan/CH₂Cl₂ wurden 209 mg (72%) 1a in orangeroten Kristallen erhalten.

1b: 300 mg (0.469 mmol) $Ru_3(CO)_{12}$ und 54 mg (1.17 mmol) Methylhydrazin wurden in 50 ml THF 5.5 h auf 70°C erhitzt. Die weitere Aufarbeitung erfolgte völlig analog wie für **1a** beschrieben. Es wurden 216 mg (77%) **1b** in orangeroten Kristallen erhalten.

1c: 300 mg (0.469 mmol) $Ru_3(CO)_{12}$ und 70 mg (1.16 mmol) 1,1-Dimethylhydrazin wurden in 50 ml THF 6 h auf 70 °C erhitzt. Die weitere Aufarbeitung erfolgte völlig analog wie für 1a beschrieben. Es wurden 167 mg (58%) 1c als orangerote Kristalle erhalten.

Alkinreaktionen: Jeweils 30-50 mg der Cluster **1a-c** wurden in 25 ml THF gelöst und mit einem 2.5fachen Überschuß des Alkins auf 60-70 °C erhitzt (weitere experimentelle Details siehe Tab. 4). Der Reaktionsverlauf wurde dünnschichtchromatographisch ver-

Tab. 4. Reaktionsbedingungen und Ansatzgrößen

Edukt	Alkin	Reakt.	l.Frak.	2.Frak.	3.Frak
mg/mmol	mg/mmol	Zeit	mg∕8	mg/%	mg∕%
1a	HCCPh	70 Min.	3a	4a	2a
37/0.06	15/0.15		7/16	14/32	5/12
1a	PhCCPh	65 Min.	3Ь	4b	2Ь
37/0.06	27/0.15		4/9	19/41	16/34
1ь	HCCPh	40 Min.	3c	4c	2c
48/0.08	20/0.20		18/33	7/12	Spur
1ь	PhCCPh	80 Min.	3d	4d	2d
42/0.07	31/0.18		4/8	Spur	32/57
1c	HCCPh	50 Min.	3e	4e	2e
37/0.06	15/0.15		31/75	Spur	2/5
1c	PhCCPh	60 Min.	3f	4f	2f
37/0.06	27/0.15		Spur	28/61	6/14

Tab. 5. Charakterisierung der neuen Komplexe

Kom-	Frabe	Summenformel		Analyse		
plex	Schmp.[°C]	(Molmasse)		с	Н	N
1a	orange	C ₁₁ H ₈ N ₂ O ₉ Ru ₃	Ber.	21.47	1.31	4.55
	98(Zers.)	(615.4)	Gef.	21.63	1.28	4.38
1Ь	orange	C ₁₀ H ₆ N ₂ O ₉ Ru ₃	Ber.	19.97	1.01	4.66
	138(Zers.)	(601.4)	Gef.	20.18	1.03	4.64
1c	orange	C ₁₁ H ₈ N ₂ O ₉ Ru ₃	Ber.	21.47	1.31	4.55
	160(Zers.)	(615.4)	Gef.	21.58	1.36	4.51
2a	rot	C ₁₉ H ₁₄ N ₂ OgRu ₃	Ber.	31.80	1.97	3.90
	161	(717.6)	Gef.	31.11	1.93	3.95
2Ъ	rot	C ₂₅ H ₁₈ N ₂ O ₉ Ru ₃	Ber.	37.83	2.29	3,53
	158(Zers.)	(793.6)	Gef.	38.66	2.64	3.47
2d	rot	C24H16N2O9Ru3	Ber.	36.97	2.07	3.59
	134(Zers.)	(779.6)	Gef.	36.20	2.08	3.81
2e ^{a)}	rot	C ₂₃ H ₂₂ N ₂ O ₁₀ Ru ₃	Ber.	34.98	2.81	3.55
	84	(787.7)	Gef.	34.57	2.79	3.82
3a ^{b)}	orange	C ₁₉ H ₁₆ C1 ₂ N ₂ O ₈ Ru ₃	Ber.	29.47	2.08	3.62
	136	(774.5)	Gef.	29.58	1.89	3.84
зь ь)	orange	C ₂₅ H ₂₀ Cl ₂ N ₂ O ₈ Ru ₃	Ber.	35.30	2.37	3,29
	154	(850.6)	Gef.	34.02	2.28	3.20
3e ^{a)}	orange	C ₂₁ H ₂₀ N ₂ O ₉ Ru ₃	Ber.	33.74	2.70	3.75
	146	(747.6)	Gef.	33.01	2.42	3.73
3e	orange	C ₁₈ H ₁₄ N ₂ O ₈ Ru ₃	Ber.	31.35	2.05	4.06
	136(Zers.)	(689.5)	Gef.	30.83	2.02	4.02
4a	rot	C ₁₈ H ₁₄ N ₂ O ₈ Ru ₃	Ber.	31.35	2.05	4.06
	119(Zers.)	(689.5)	Gef.	31.93	2.07	3.88
4f	rot	C24H18N2O8Ru3	Ber.	37.65	2.37	3.66
	98	(765.5)	Gef.	37.58	2.35	3.60

^{a)} Komplex kristallisiert mit einem Äquivalent THF. – ^{b)} Komplex kristallisiert mit einem Äquivalent CH₂Cl₂.

folgt, und die Reaktionen wurden abgebrochen, nachdem kein Edukt mehr feststellbar war. Anschließend wurde das Lösungsmittel i. Vak. entfernt, die Rückstände wurden in wenig CH_2Cl_2 gelöst und mittels präparativer Dünnschichtchromatographie mit Hexan/ $CH_2Cl_2/Aceton$ (7:2.5:0.5) als Elutionsmittel aufgetrennt: 1. Fraktion (gelborange): 3. – 2. Fraktion (orangerot): 4. – 3. Fraktion (orangerot): 2.

Da die Komplexe 2-4 ein sehr ähnliches Elutionsverhalten zeigten, wurden die einzelnen Fraktionen mittels DC-Kontrolle auf ihre Reinheit überprüft und wenn nötig einer erneuten präparativen Dünnschichtchromatographie unterworfen. Nach Umkristallisation aus Hexan/CH₂Cl₂ wurden von den Komplexen 2a, b, d, e, 3a-c, e und 4a, f analysenreine orangerote Kristalle erhalten. Die Ansatzgrößen, Reaktionszeiten und Ausbeuten finden sich in Tab. 4.

Reaktion von 1c mit Phenylacetylen unter CO: Eine Lösung von 50 mg (0.08 mmol) 1c und 20 mg (0.20 mmol) PhCCH in 30 ml THF wurde unter Durchleiten eines kräftigen CO-Stroms 5.5 h auf 70 °C erhitzt. Dabei entweichendes Lösungsmittel wurde mehrmals ersetzt. Der Reaktionsverlauf wurde mittels DC-Kontrolle verfolgt, wobei neben 3e und 4e die Bildung von 2e als Hauptprodukt beobachtet wurde. Anschließend wurde die Reaktionslösung i.Vak. zur Trockne eingeengt, der Rückstand in wenig CH₂Cl₂ gelöst und

Tab. 6. Kristallographische Details

	3e ^{a)}	4a
Summenformel	C ₁₉ H ₁₆ Cl ₂ N ₂ O ₈ Ru ₃	C ₁₈ H ₁₄ N ₂ O ₈ Ru ₃
Molmasse	774.5	689.5
Krist. aus	Hexan/CH ₂ Cl ₂	Hexan/CH ₂ Cl ₂
Krist.größe [mm]	0.1 x 0.3 x 0.1	0.8 x 0.2 x 0,2
Farbe	orange	orange
Raumgruppe	P2 ₁ /c	PT
Z	4	2
a [pm]	1032.8(2)	794.2(2)
b [pm]	1193.3(2)	934.7(2)
c [pm]	2156.0(4)	1548.0(3)
α. [°]	90	83.52(3)
β [°]	101.04(3)	84.20(3)
γ [°]	90	73.47(3)
V [nm ³]	2.6079	1.0917
d _{ber} . [g cm ^{-3]}	1.97	2.10
d _{gef.} [g cm ⁻³]	1.98	2.12
$\mu \text{[cm}^{-1}\text{]} (Mo-K_{\alpha})$	19.34	20.56
Meßmethode	ω/2Θ	ω/2Θ
20-Bereich [°}	2-46	2-46
hkl-Bereich	±h, +k, +1	±h, ±k, ±l
Reflexe (I≥4σ(I))	3197	2779
Variable	293	285
R-Wert	0.052	0.037
Restel. Dichten	+1.77	+1.16
[10 ⁻⁶ e pm ⁻³]	-1.17	-0.93

^{a)} Kristallisiert mit 1 Äquivalent CH₂Cl₂.

mittels präparativer Dünnschichtchromatographie mit Hexan/ CH₂Cl₂/Aceton (7:2.5:0.5) als Elutionsmittel aufgetrennt: 1. Fraktion (orangegelb): 8 mg (15%) 3e. - 2. Fraktion (orangerot): Spur 4e. - 3. Fraktion (orangerot): 21 mg (37%) 2e.

Reaktion von 3e mit CO: Eine Lösung von 30 mg (0.04 mmol) 3e in 20 ml THF wurde unter Durchleiten eines kräftigen CO-Stroms 4 h auf 60°C erhitzt. Entweichendes Lösungsmittel wurde dabei mehrmals ersetzt. Anschließend wurde die Reaktionslösung i. Vak. zur Trockne eingeengt, der Rückstand in wenig CH₂Cl₂ gelöst und die Lösung mittels präparativer Dünnschichtchromatographie mit Hexan/CH2Cl2/Aceton (7:2.5:0.5) als Elutionsmittel aufgetrennt: 1. Fraktion (orangegelb): 7 mg (23%) Edukt 3e. - 2. Fraktion (orangerot): 13 mg (41%) 2e.

Strukturanalysen^[13]: Kristalle wurden durch langsame Verdunstung gewonnen. Tab. 6 gibt die Details zu den kristallographischen Arbeiten. Die mit Mo-Ka-Strahlung auf einem Nonius-CAD4-Diffraktometer erhaltenen Meßdaten wurden einer empirischen Absorptionskorrektur unterworfen^[14]. Die Strukturen wurden mit direkten Methoden gelöst und mit anisotropen Temperaturfaktoren verfeinert^[15]. Alle C-gebundenen H-Atome wurden mit fixem C-H-Abstand von 96 pm und gemeinsamem isotropen Temperaturfaktor in die Berechnungen miteinbezogen. Die Vinyl-Wasserstoffatome in beiden Komplexen und das N-gebundene Wasserstoffatom in 4a konnten lokalisiert und frei verfeinert werden. Die aromatischen Ringe wurden als starre Gruppen verfeinert. Abbildungen wurden mit dem Programm SCHAKAL erstellt^[16].

- ^[1] E. Sappa, A. Tiripicchio, P. Braunstein, Chem. Rev. 1983, 83, 203-239; Coord. Chem. Rev. 1985, 65, 219-284.
- ^[2] Vgl. G. Lavigne in *The Chemistry of Metal Cluster Complexes* (Hrsg.: D. F. Shriver, H. D. Kaesz, R. D. Adams), VCH, Weinheim, 1990, S. 201.
- ^[3] H. Vahrenkamp, Pure Appl. Chem. 1989, 61, 1777-1782.
- ^[4] H. Vahrenkamp, Pure Appl. Chem. 1991, 63, 643-649.
- ^{15]} M. Tasi, A. K. Powell, H. Vahrenkamp, Chem. Ber. 1991, 124, 1549 - 1557
- ¹⁶ D. Hcineke, H. Vahrenkamp, Chem. Ber. 1993, 126, 365-371.
- ^[7] B. Hansert, H. Vahrenkamp, Chem. Ber. 1993, 126, 2011-2016, voranstehend.
- ^[8] T. Jenke, H. Stöckli-Evans, G. Süss-Fink, J. Organomet. Chem. 1990, 391, 395-402
- ^[9] B. Hansert, M. Tasi, A. Tiripicchio, M. Tiripicchio-Camellini, H. Vahrenkamp, Organomet. 1991, 10, 4070-4073.
- ^[10] N. Lugan, F. Laurent, G. Lavigne, T. P. Newcomb, E. W. Liimatta, J.-J. Bonnet, J. Am. Chem. Soc. 1990, 112, 8607-8609.
- ^[11] A. G. Orpen, D. Pippard, G. M. Sheldrick, K. D. Rouse, Acta Crystallogr. 1978, 34, 2466 – 2472. ^[12] W. Deck, M. Schwarz, H. Vahrenkamp, *Chem. Ber.* 1987, *120*,
- 1515-1521.
- ^[13] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe. Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-400155 (für 3e) und -400156 (für 4a), der Autoren und des Zeitschriftenzitats angefordert werden.
- ^[14] N. Walker, D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158-166.
- ^[15] G. M. Sheldrick, SHELX, Universität Göttingen, 1986–1993.
- ^[16] E. Keller, SCHAKAL, Universität Freiburg, 1993.

[145/93]